
J. Fluid Mech. (2010), vol. 654, pp. 281–303. c© Cambridge University Press 2010

doi:10.1017/S0022112010000601

281

Fully nonlinear higher-order model equations
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Fully nonlinear model equations, including dispersive effects at one-order higher
approximation than in the model of Choi & Camassa (J. Fluid Mech., vol. 396, 1999,
pp. 1–36), are derived for long internal waves propagating in two spatial horizontal
dimensions in a two-fluid system, where the lower layer is of infinite depth. The model
equations consist of two coupled equations for the displacement of the interface and
the horizontal velocity of the upper layer at an arbitrary elevation, and they are
correct to O(µ2) terms, where µ is the ratio of thickness of the upper-layer fluid to
a typical wavelength. For solitary waves propagating in one horizontal direction, the
two coupled equations reduce to a single equation for the elevation of the interface.
Solitary wave profiles obtained numerically from this equation for different wave
speeds are in good agreement with computational results based on Euler’s equations.
A numerical approach for the propagation of solitary waves is provided in the weakly
nonlinear case.

1. Introduction
The dynamics of internal waves in stratified fluid has attracted great attention due

to their importance in near coastal dynamics. Recent observations show that large-
amplitude internal waves are common phenomena in oceans (see e.g. Liu et al. 1998;
Stanton & Ostrovsky 1998; Orr & Mignerey 2003; Zeng & Alpers 2004). An atlas of
internal solitary-like waves and their properties in different ocean basins is available
in Jackson (2004). Recently, Helfrich & Melville (2006) have given an extensive review
of the properties of steady internal solitary waves and transient processes of wave
generation and evolution, primarily from the point of view of weakly nonlinear theory
of which the Korteweg–de Vries (KdV) equation is the most frequently used example.

Appropriate model equations are needed to describe the long internal waves
mentioned above. Koop & Butler (1981) were the first to investigate whether weakly
nonlinear model equations in a two-fluid system are appropriate for describing
experimental results. They concluded that the weakly nonlinear KdV model equation
performed fairly well over a wide range of amplitudes for configurations involving
shallow depths in each layer. However, Grue et al. (1999) found that KdV theory
departed from experiments and the Euler equations, when the wave amplitude
over the thin layer depth exceeded 0.4, for moderate depth ratio. For deep-water
configurations, Segur & Hammack (1982), using salt-stratified water, confirmed that
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weakly nonlinear theory agrees poorly with experimental observation. However, it
is true that fully nonlinear dispersive theory departs earlier from the Benjamin-Ono
(BO) asymptote (infinitely deep lower layer) than when the lower-layer depth is finite,
but large (see Fructus & Grue 2004, figure 5b, c). These observations have led to a
continuing interest in the development of both weakly nonlinear and fully nonlinear
model equations for two-fluid systems in both finite and infinite depth configurations.
Recent examples include Choi & Camassa (1996a) and Lynett & Liu (2002) for
weakly nonlinear waves and Choi & Camassa (1996b, 1999) for fully nonlinear
waves. Choi & Camassa (1996b, 1999) derived fully nonlinear O(µ) model equations
for internal waves in a two-fluid system; here µ is the ratio of the depth of the upper
fluid to a typical wavelength of the internal wave. In a later paper, Camassa et al.
(2006) investigated the region of validity of KdV and the formulation by Choi &
Camassa (1999) for large-amplitude waves by comparing the solutions with direct
solutions of the Euler equations using the formulation of Grue et al. (1999).

It has been known for a long while that Choi & Camassa (1999) model has
relatively poor representation of dispersive effects, which has been documented in
the paper by Ostrovsky & Grue (2003). In the present study, the highly nonlinear
O(µ) model equations derived by Choi & Camassa (1996b, 1999) are extended to
include O(µ2) terms. The model described here is restricted to the limit of infinite
lower-layer depth, but we allow for propagation in two horizontal spatial dimensions.
Instead of using the depth averaged upper-layer velocity as a dependent variable,
we use the horizontal velocity at an arbitrary elevation in the upper layer as the
velocity variable. This approach was first introduced by Nwogu (1993) to derive a
new form of Boussinesq equations in a single fluid layer, and was later followed by
Wei et al. (1995) to derive fully nonlinear Boussinesq equations for surface waves, to
the same order in approximation of dispersive effects as considered here. Extensions
of this approach to higher order in dispersive properties may be found, for example, in
Gobbi, Kirby & Wei (2000) and Madsen, Bingham & Liu (2002). The model equations
we derive consist of two coupled equations for two variables, one of which is the
elevation of the interface and the other is the horizontal velocity of the upper layer
at an arbitrary elevation. The model equations derived here give a linear dispersion
relation which agrees with the full linear dispersion relation to within the accuracy of
a (2, 2) Padé approximation for the tanh x/x term appearing in the full expression. A
reduced form of the model equations is obtained for propagation in one horizontal
space dimension. In the limit of infinite lower-layer depth, the two reduced equations
are found to be equivalent to (1) of Choi & Camassa (1996b) and to (4.17) and (4.18)
of Choi & Camassa (1999) when O(µ2) terms are neglected, and to (12) of Ruiz de
Zárate et al. (2009) when O(µ2) terms are retained, when the reduced equations are
expressed in terms of depth averaged velocity of the upper layer.

For a solitary wave travelling with constant speed, the model equations are reduced
to a single equation for the elevation of the interface, which is found to be the same as
(13) of Choi & Camassa (1996b) when O(µ2) terms are dropped. Numerical solutions
for solitary wave profiles are obtained for different wave speeds. Results are also
compared with the results obtained from full Euler equations algorithm described
in Grue et al. (1999) for the case when the depth of lower fluid is 9 times and 24
times that of the upper fluid. It is found that the solitary wave profiles obtained
from O(µ2) order evolution equation are in better agreement with Euler’s results than
those obtained from O(µ) evolution equation of Choi & Camassa (1999), described
in Camassa et al. (2006).
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Figure 1. Fluid domain for two-fluid model with infinite lower-layer depth.

Finally, a numerical approach for studying one-way propagation in one horizontal
dimension is described, following on the work of Nguyen & Dias (2008) in the weakly
nonlinear case.

2. Derivation of the O(µ2) model equations
We consider internal waves propagating at the interface of two inviscid

incompressible fluids, where the upper fluid is of finite depth h1, the lower fluid
is of infinite depth and there is a rigid lid at the top of the upper fluid. (The rigid
lid approximation is justified for internal wave motions having frequencies which are
much lower than the frequency of a surface wave of comparable wavelength (see
Phillips 1977, § 5.2.) The undisturbed interface of the two fluids is taken as the plane
z = 0, the positive direction of z-axis pointing vertically upwards (figure 1). We assume
the fluid to be inviscid and incompressible and the motion to be irrotational.

Following Choi & Camassa (1999), we non-dimensionalize relevant variables
using

(x, y) =
1

L
(x∗, y∗), z =

z∗

h1

, t =
U0

L
t∗, φ1,2 =

φ∗
1,2

εU0L
, η =

η∗

α
, (2.1)

where asterisks denote dimensional forms. Here, (x, y) denotes horizontal position, η

represents interface displacement and φi represents velocity potential in each layer.
Additional scales include U0 =

√
gh1, L a typical wavelength of a long internal wave

propagating in the two-layer fluid system, and α, a characteristic value of η. We
introduce two parameters: µ = (h1/L) � 1, characterizing relative wavelength or
frequency dispersion, and ε =α/h1 = O(1), characterizing nonlinearity.

The non-dimensional governing equations for the problem can then be written as

φ1zz + µ2∇2φ1 = 0, εη < z < 1, (2.2)

φ1z = 0, z = 1, (2.3)

ηt + ε∇φ1 · ∇η =
1

µ2
φ1z, z = εη (2.4)
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for the upper layer, and

φ2zz + µ2∇2φ2 = 0, −∞ < z < εη, (2.5)

φ2 bounded as z → −∞, (2.6)

ηt + ε∇φ2 · ∇η =
1

µ2
φ2z, z = εη (2.7)

for the lower layer. Matching pressure at the interface then gives

(1 − R)η +φ2t − Rφ1t +
ε

2
(∇φ2)

2 +
ε

2µ2
(φ2z)

2 − εR

2
(∇φ1)

2 − εR

2µ2
(φ1z)

2 = 0, z = εη,

(2.8)

where R = ρ1/ρ2 � 1.
Taking the Fourier transform of (2.2) and (2.3) with respect to x and y gives

φ̄1zz − k2µ2φ̄1 = 0 (2.9)

and

φ̄1z =0 at z = 1, (2.10)

where the Fourier transform of a function f (x, y) with respect to x, y has been
defined as

f̄ =
1

2π

∫ ∫ ∞

−∞
f (x, y)ei(kxx+kyy) dx dy, (2.11)

and where k = (kx, ky) is a wavenumber vector with k = |k|.
The solution of (2.9) satisfying (2.10) is

φ̄1 = Ā coshµk(z − 1), (2.12)

A= F −1[Ā] is the value of φ1 at z = 1, where by F −1 we mean Fourier inversion.
Expanding (2.12) in powers of µk, keeping terms up to any desired power of µ and
then using Fourier inversion, we can express φ1 in terms of the variable A. Instead,
we shall express φ1 in terms of a new variable φa(x, y), the value of φ1 at z = a. The
Fourier transform φ̄a of φa with respect to x, y can be obtained from (2.12) by setting
z = a. We get the following expression for φ̄a , the Fourier transform of φa = (φ1)z = a:

φ̄a = Ā coshµk(a − 1). (2.13)

The following equation is obtained after eliminating Ā between (2.12) and (2.13):

φ̄1 = φ̄a

coshµk(z − 1)

coshµk(a − 1)
. (2.14)

Expanding (2.14) in powers of µk gives the following expression for φ̄1, correct up to
O(µ2) terms:

φ̄1 = φ̄a +
1

2
µ2k2{(z − 1)2 − B2}φ̄a + O(µ4), (2.15)

where

B2 = (a − 1)2. (2.16)

Fourier inversion of (2.15) gives the following expression for φ1 expressed in terms of
a new variable φa as desired:

φ1 = φa − 1

2
µ2{(z − 1)2 − B2}∇2φa + O(µ4). (2.17)
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For the potential of the lower layer, we take the Fourier transform of (2.5) and (2.6)
with respect to x, y and get

φ̄2zz − k2µ2φ̄2 = 0 (2.18)

and

φ̄2 bounded as z → −∞. (2.19)

The solution of (2.18) satisfying (2.19) is

φ̄2 = B̄eµkz, (2.20)

where B = F −1[B̄] is the value of φ2 at z = 0. Expanding (2.20) in ascending powers
of µk, we get

φ̄2 = B̄ + µkzB̄ +
1

2
µ2k2z2B̄ +

1

6
µ3k3z3B̄ + O(µ4). (2.21)

This expression is valid for finite |z| and is not uniformly valid for large |z|. As we
need the value of φ̄2 at z = η, i.e. at a finite value of |z| and not for the whole range of
|z|, the polynomial approximation for φ̄2 given by (2.21) is sufficient for our purpose.

The Fourier inversion of (2.21) gives

φ2 = B + µzF −1[kB̄] − 1

2
µ2z2∇2B +

1

6
µ3z3F −1[k3B̄] + O(µ4),

= B − µzP [B] − 1

2
µ2z2∇2B +

1

6
µ3z3∇2(P [B]) + O(µ4), (2.22)

where P is the integral operator given by

P [ψ(x, y)] =
1

2π

∫ ∫ ∞

−∞

ψ(x ′, y ′)

[(x ′ − x)2 + (y ′ − y)2]3/2
dx ′ dy ′ (2.23)

which follows from

F −1[kB̄] = F −1

[(
k2

x + k2
y

) B̄

k

]
,

= −∇2F −1

[
B̄

k

]
,

= −∇2 1

2π

∫ ∫ ∞

−∞

B(x ′, y ′)√
(x ′ − x)2 + (y ′ − y)2

dx ′ dy ′,

= − 1

2π

∫ ∫ ∞

−∞

B(x ′, y ′)

[(x ′ − x)2 + (y ′ − y)2]3/2
dx ′ dy ′ = −P [B] (2.24)

by the use of convolution theorem and by the formula F −1[1/k] = 1/
√

x2 + y2. The
two-dimensional Fourier inversion formula like (2.24) were introduced in the papers
by Grue (2002) and Clamond & Grue (2001) in more extended form in connection
with fully nonlinear and fully dispersive interfacial waves.

We introduce here the integral operator given by

Q[ψ(x, y)] =
1

2π

∫ ∫ ∞

−∞

ψ(x ′, y ′)

[(x ′ − x)2 + (y ′ − y)2]1/2
dx ′ dy ′. (2.25)

It can easily be shown that

∇(Q[ψ(x, y)]) = H[ψ(x, y)], (2.26)
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where H is a vector-valued two-dimensional operator given by

H[ψ(x, y)] = ix

1

2π

∫ ∫ ∞

−∞

(x ′ − x)ψ(x ′, y ′)

[(x ′ − x)2 + (y ′ − y)2]3/2
dx ′ dy ′

+ iy

1

2π

∫ ∫ ∞

−∞

(y ′ − y)ψ(x ′, y ′)

[(x ′ − x)2 + (y ′ − y)2]3/2
dx ′ dy ′ (2.27)

The operator H will be needed in writing one of the two model equations at the end
of this section.

Equation (2.22) shows that the terms containing odd powers of k in (2.21) produce
terms expressed in terms of a Hilbert transform type operator when returning to
physical space. This issue has previously been discussed and pursued by, for example,
Choi & Camassa (1996b, 1999) in connection with internal waves and by Bingham &
Agnon (2005) in connection with Boussinesq type formulation.

The O(µ2) highly nonlinear model equations can now be obtained from (2.4), (2.7)
and (2.8) after substituting for φ1 and φ2 from (2.17) and (2.22), respectively. The
following equation is obtained after integrating (2.2) with respect to z between the
limits εη and 1 and then using (2.4):

−∂η

∂t
+ ∇ ·

∫ 1

εη

∇φ1 dz = 0. (2.28)

Substituting here for φ1 given by (2.17) and then performing the integration gives the
following equation, which constitutes one of the three model equations we are going
to derive:

∂η

∂t
− ∇ · (hua) +

1

2
µ2∇ ·

{
h

(
1

3
h2 − B2

)
∇(∇ · ua)

}
= 0, (2.29)

where we have set

ua = ∇φa (2.30)

and where h = 1 − εη.
Integrating (2.5) with respect to z between the limits −∞ and εη and then using

(2.7), we get

∂η

∂t
+ ∇ ·

∫ εη

−∞
∇φ2 dz = 0. (2.31)

In this equation we cannot substitute for φ2 given by (2.22) and integrate term by
term with respect to z as one of the limits of integration is −∞. To remove this
difficulty we proceed as follows. We define a vector-valued function f (z) as

f (z) =

∫ z

−∞
∇φ2 dz. (2.32)

Then, (2.31) can be written as

∂η

∂t
+ ∇ · ( f )z=εη = 0. (2.33)

Taking the Fourier transform of (2.32) with respect to x and y gives

f̄ = −ik
∫ z

−∞
φ̄2 dz. (2.34)
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Substituting for φ̄2 given by (2.20) and then integrating with respect to z gives

µ f̄ = −i
k
k
B̄eµkz (2.35)

or

µ f̄ = −i
k
k
B̄ − ikµzB̄ − 1

2
iµ2k2z2 k

k
B̄ + O(µ3) (2.36)

after expanding eµkz in ascending powers of µk. Fourier inversion of (2.36) gives

µ f = ∇(Q[B]) + µz∇B − 1

2
µ2z2∇(∇2(Q[B])) + O(µ3) (2.37)

by the use of the result

F −1

[
B̄

k

]
=

1

2π

∫ ∫ ∞

−∞

B(x ′, y ′)√
(x ′ − x)2 + (y ′ − y)2

dx ′ dy ′ = Q[B],

according to (2.24) and (2.25).
Multiplying (2.33) by µ, substituting for µ f using (2.37) and keeping terms up to

O(µ2) gives

µ
∂η

∂t
+ P [B] + µε∇ · (η∇B) − 1

2
µ2ε2∇ · {η2∇(P [B])} = 0, (2.38)

where the relation (2.25) has been used. Equation (2.38) is the second of the three
O(µ2) model equations, and represents depth-integrated volume conservation in the
lower layer. The third equation will now be derived from (2.8). Substituting in this
equation the expressions for φ1 and φ2 given respectively by (2.17) and (2.22), we get
the following equation correct to O(µ2) terms:

(1 − R)η + Bt − Rφat +
1

2
ε(∇B)2 − 1

2
εR(∇φa)

2 +
1

2
ε(P [B])2

+ µεη{−P [Bt ] − ε(∇B) · ∇(P [B]) + εP [B]∇2B}

+
1

2
µ2

[
−ε2η2{∇2Bt − ε(∇P [B])2 + ε(∇B) · ∇(∇2B) − ε(∇2B)2 + ε(P [B])∇2(P [B])}

+ R(h2 − B2)∇2φat + εR(h2 − B2)(∇φa) · ∇(∇2φa) − εRh2(∇2φa)
2
]

= 0. (2.39)

The three equations (2.29), (2.38) and (2.39) constitute the O(µ2) model equations
where the neglected terms are of O(µ3). The last two equations can be simplified
considerably due to the estimate

P [B] = O(µ) (2.40)

that can be obtained from (2.38). Due to the estimate (2.40), (2.38) and (2.39) can
be reduced to the following equations, where O(µ3) and higher-order small terms are
neglected:

µ
∂η

∂t
+ P [B] + µε∇ · (η∇B) = 0, (2.41)

(1 − R)η +Bt − Rφat +
1

2
ε(∇B)2 − 1

2
εR(∇φa)

2 +
1

2
ε(P [B])2 − µεη(P [Bt ])+

1

2
µ2

×
[
R(h2 − B2)∇2φat + εR(h2 − B2)(∇φa) · ∇(∇2φa) − εRh(∇2φa)

2
]

= 0. (2.42)
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We now express B in terms of η using (2.41), so that the model equations can
involve only two unknowns η and ua governed by two equations. Taking the Fourier
transform of (2.41), we can express B̄ as

B̄ =
µ

k
η̄t − iµε

k
k · F [η∇B] + O(µ3), (2.43)

the Fourier inversion of which gives

B = µQ[ηt ] + µεQ[∇ · (η∇B)] + O(µ3), (2.44)

where Q is an integral operator given by (2.25).
Inverting (2.44) for B gives

B = µQ[ηt ] + µ2εQ[∇ · {η∇(Q[ηt ])}] + O(µ3). (2.45)

Taking the gradient of (2.42) and then eliminating B by the use of (2.45), the following
equation correct to O(µ2) terms is obtained, where we use the relation (2.26):

(1 − R)∇η + µH[ηtt ] + µ2ε H[∇ · {ηt H[ηt ]}] + µ2ε H[∇ · {ηH[ηtt ]}] − Rua t

− εR(ua · ∇)ua + µ2ε{H[ηt ] · ∇}H[ηt ] + µ2εηt∇ηt + µ2ε∇(ηηtt )

+
1

2
µ2R∇{(h2 − B2)∇ · ua t} +

1

2
µ2εR∇{(h2 − B2)ua · ∇(∇ · ua)}

− 1

2
µ2εR∇{h2(∇ · ua)

2} = 0, (2.46)

where ua is defined in (2.30). The two coupled equations (2.29) and (2.46) in terms
of the two dependent variables η and ua constitute the O(µ2) model equations for
highly nonlinear internal waves in a two-layer fluid system, where the lower layer is
of infinite depth.

The two model equations (2.29) and (2.46) can be written in a form more suitable
for numerical time-domain solution. From these two equations we get, by successive
approximation, the following O(µ) estimates of ηt , uat and ηtt which do not contain
time derivatives:

ηt = A + O(µ2), uat = U + O(µ), ηtt = A1 + µA2 + O(µ2), (2.47)

where

A = ∇ · (hua),

U =

(
1 − R

R

)
∇η − ε(ua · ∇)ua,

A1 = −ε∇ · {ua∇ · (hua)} +

(
1 − R

R

)
∇ · (h∇η) − ε∇ · {h(ua · ∇)ua},

A2 = − ε

R
∇ · {hH[∇ · {(∇ · (hua))ua}]} +

(
1 − R

R2

)
∇ · {hH[∇ · (h∇η)]}

− ε

R
∇ · {hH[∇ · {h(ua · ∇)ua}]}.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.48)

Substituting the expressions for ηt , ua t and ηtt given by (2.47) in the model equations
(2.29) and (2.46) leads to the following forms which are suitable for numerical time-
domain solution:

ηt = A − 1

2
µ2∇ ·

{
h

(
1

3
h2 − B2

)
∇(∇ · ua)

}
(2.49)
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and

uat =

(
1 − R

R

)
∇η − ε(ua · ∇)ua +

µ

R
H[A1] +

µ2

R
H[A2] +

µ2ε

R
H[∇ · {AH[A]}]

+
µ2ε

R
H[∇ · {ηH[A1]}] +

µ2ε

R
{H[A] · ∇}H[A] +

µ2ε

R
A∇A +

µ2ε

R
∇(ηA1)

+
1

2
µ2∇{(h2 − B2)∇ · u} +

1

2
µ2ε∇{(h2 − B2)u · ∇(∇ · ua)}

− 1

2
µ2ε∇{h2(∇ · ua)

2}. (2.50)

3. Propagation in one horizontal space dimension
In this section we find the reduced form of the two equations (2.29) and (2.46)

when propagation takes place in one horizontal space dimension, which we take as
x-axis.

It can be shown that when ψ does not depend on y, then

H[ψ(x)] = ixH [ψ(x)], (3.1)

where H is the Hilbert transform operator given by

H [ψ(x)] =
1

π

∫ ∞

−∞

ψ(x ′)

x ′ − x
dx ′. (3.2)

Also, since in this particular case the dependent variables do not depend on y, we get

ua = ∇φa = ixφax = ixu, (3.3)

where the subscript a is subsequently dropped. Equation (2.29) then reduces to

ηt − (hu)x +
1

2
µ2

{
h

(
h2

3
− B2

)
uxx

}
x

= 0, (3.4)

where O(µ3) terms are neglected.
The y-component of (2.46) vanishes identically, while its x-component becomes

(1 − R)ηx + µH [ηtt ] + µ2εH [{ηtH [ηt ]}x] + µ2εH [{ηH [ηtt ]}x] − Rut

+ µ2εH [ηt ]{H [ηt ]}x − εRuux + µ2εηtηxt + µ2ε(ηηtt )x

+
1

2
µ2R{(h2 − B2)uxt}x +

1

2
µ2εR{(h2 − B2)uuxx}x − 1

2
µ2εR

{
h2u2

x

}
x

= 0, (3.5)

where O(µ3) terms are neglected.
Therefore, when propagation takes place in one horizontal space dimension, the

coupled equations (3.4) and (3.5) constitute the O(µ2) model equation for propagation
of highly nonlinear internal waves in a two-layer fluid system in which the lower layer
is of infinite depth.

The coupled equations (3.4) and (3.5) assume the following form when O(µ2) terms
are neglected:

ηt − (hu)x = 0, (3.6)

(1 − R)ηx + µH [ηtt ] − R(ut + εuux) = 0. (3.7)

If we write these two equations in dimensional form after writing 1/R = ρ and taking
a =h1, L = h1 then they are equivalent to (1) of Choi & Camassa (1996b) and (4.17),
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(4.18) of Choi & Camassa (1999), since their ū1 can be identified with u of the present
paper to within errors of O(µ2).

The coupled equations (3.4) and (3.5) correct to O(µ2) terms, when written in terms
of depth-averaged horizontal velocity of the upper-layer fluid, are equivalent to the
recently derived equations (12) of Ruiz de Zárate et al. (2009) for the case of infinite
depth fluid. From (2.17) we find that the horizontal velocity u1 = φ1x of the upper
fluid is

u1 = u(x) − 1

2
µ2{(z − 1)2 − B2}uxx + O(µ4). (3.8)

Hence, the depth-averaged velocity ū1 is

ū1 =
1

1 − εη

∫ 1

εη

u1 dz = u − 1

2
µ2

(
1

3
h2 − B2

)
uxx + O(µ4). (3.9)

Inverting this equation for u, we get

u = ū1 +
1

2
µ2

(
1

3
h2 − B2

)
ū1xx + O(µ4). (3.10)

Substituting the expression for u given by (3.10) in (3.4), we get

ηt − (hū1)x = 0, (3.11)

which is equivalent to the first of the two equations in (12) of Ruiz de Zárate et al.
(2009) for infinite depth fluid. Next, we substitute the same expression for u given by
(3.10) in (3.5) and arrive at the equation

ū1t+εū1ū1x+

(
1− 1

R

)
ηx =

µ

R
H [hū]xt+

µ2

3h
(h3G)x+

µ2ε

R

[
η(hū1)xt+

1

2
[(hū1)x]

2

]
x

+
µ2ε

R
H [ηH [hū1]x]xt +

µ2ε

2R
[(H [hū1]x)

2]x + O(µ3) (3.12)

with

G = ū1xt + εū1ū1xx − ū2
1x, (3.13)

which is equivalent to the second of the two equations in (12) of Ruiz de Zárate et al.
(2009).

4. Linear dispersion relation
In this section we find the linear dispersion relation from the two model equations

(2.29) and (2.46). Firstly, we write below the full linear dispersion relation that can be
obtained from the linearized form of the governing equations (2.2)–(2.8) after assuming
space–time dependence of the dependent variables to be of the form exp i(k · r − ωt).
The phase speed resulting from the full linear problem is denoted by cE and is given
by

c2
E =

(ω

k

)2

=
(1 − R)T

µk(R + T )
, T = tanhµk. (4.1)

For very long waves, i.e. for µ → 0, the above dispersion relation simplifies to

c2
LW =

1 − R

R
. (4.2)
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Choi & Camassa (1999) give the dispersion relation for their model in (4.41). In the
infinitely deep-water (kh2 → ∞) limit and in dimensionless form, this reduces to

c2
CC =

1 − R

R + µk
. (4.3)

Choi & Camassa (1999) point out that this expression is asymptotically equivalent to
the BO dispersion relation

c2
BO =

(1 − R)

R

(
1 − µk

2R

)2

, (4.4)

which follows from (2.9) in Choi & Camassa (1999). It is seen below that (4.3) and
(4.4) diverge fairly rapidly for realistic ranges of wavelengths, indicating that (4.3)
should be thought of as the proper expression for the model equations by Choi &
Camassa (1999).

Turning to the present model, the linearized form of (2.29) is

ηt − Pa +
1

2
µ2

(
1

3
− B2

)
∇2Pa = 0, (4.5)

where we have set

∇ · ua = Pa. (4.6)

Next, taking the divergence of the linearized form of (2.46), we get

(1 − R)∇2η +
µ

2π
∇2

∫ ∫ ∞

−∞

ηtt (x
′, y ′)

[(x ′ − x)2 + (y ′ − y)2]1/2
dx ′ dy ′

− RPat +
1

2
µ2R(1 − B2)∇2Pat = 0, (4.7)

where we have used (4.6). Assuming space–time dependence of η and Pa to be of the
form exp i(k · r − ωt), (4.5) and (4.9) produce, as shown in Appendix A, the linear
dispersion relation for the present model

c2 =
(1 − R)Tapprox

µk(R + Tapprox )
; Tapprox = µk

1 +
1

2

(
1

3
− B2

)
µ2k2

1 +
1

2
(1 − B2)µ

2k2

, (4.8)

where Tapprox represents an approximation to the tanh function appearing in (4.1).
The free parameter B2 can be chosen by forcing Tapprox to correspond to the (2,2)
Padé approximant

Tapprox → TPadé = µk
1 +

1

15
µ2k2

1 +
2

5
µ2k2

, (4.9)

which follows if we take B2 = 1/5, which gives (a−1)2 = 1/5, or a = 1−1/
√

5 = 0.5528,
corresponding to a reference elevation for u or φ1 in the upper layer slightly above
the mid depth of the layer.

Figure 2 displays dispersion relation results for a density ratio ρ = 1/R = 1.05 and a
range of relative upper-layer depths 0 < µk < 5, which covers the range from shallow
to deep upper-layer depth relative to the interfacial wavelength. In figure 2(a), results
for c2 for the present theory are shown together with long wave, BO and Choi &
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Figure 2. Normalized phase speed squared versus wavenumber for ρ = 1/R = 1.05. (a) Values
of c2 normalized by exact linear theory c2

E for the present theory (solid line), Choi & Camassa
(1999) (dashed line), BO (dash-dot line) and long wave theory (dotted line). (b) Per cent error
in c2 for the present theory.

Camassa (1999) results, each of which have been normalized by the full linear theory
result (4.1). The long wave result is seen to deviate rapidly from the exact solution.
The improvement afforded by BO and Choi & Camassa (1999) results is only slight,
and the two results then diverge in opposite directions, with the BO result breaking
down for µk � 2R. In contrast, the dispersion relation predicted by the present O(µ2)
theory is relatively robust over a wide range of upper-layer depths. Figure 2(b) shows
the per cent error in predicted phase speed squared for the present theory, which is
typically less than 1 % for a reasonably wide range of upper-layer depths.
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5. Travelling wave solution
For waves of finite amplitude propagating along x-axis with a constant velocity U ,

we substitute η = η(X) and u = u(X), with X = x − Ut in the coupled equations (3.4)
and (3.5), which are the O(µ2) model equations for propagation in one horizontal
space dimension. The two equations then assume the following form, where O(µ3)
terms are neglected:

−UηX − (hu)X +
1

2
µ2

{
h

(
1

3
h2 − B2

)
uXX

}
X

= 0, (5.1)

(1 − R)ηX + µU 2H [ηXX] + µ2εU 2H [{ηXH [ηX]}X] + µ2εU 2H [{ηH [ηXX]}X]

+ RUuX + µ2εU 2{H [ηX]∂X}H [ηX] − εRuuX + µ2εU 2ηXηXX + µ2ε(ηηXX)X

− 1

2
µ2RU{(h2 − B2)uXX}X +

1

2
µ2εR{(h2 − B2)uuXX}X − 1

2
µ2εR{h2u2

X}X = 0. (5.2)

Terms involving repeated Hilbert transform operator in (5.2) are not new here as
similar terms appear in (3.6) of Clamond & Grue (2001). Integrating (5.1) and (5.2)
once and assuming that η, u and their derivatives vanish at |X| → ∞, which are the
requirements for a solitary wave, we get

−Uη − hu +
1

2
µ2h

(
1

3
h2 − B2

)
uXX = 0 (5.3)

and

(1 − R)η + µU 2H [ηX] + µ2εU 2H [ηXH [ηX]] + µ2εU 2H [ηH [ηXX]]

+ RUu +
1

2
µ2εU 2{H [ηX]}2 − 1

2
εRu2 +

1

2
µ2εU 2η2

X + µ2εηXX

− 1

2
µ2RU (h2 − B2)uXX +

1

2
µ2εR(h2 − B2)uuXX − 1

2
µ2εRh2u2

X = 0. (5.4)

Inverting (5.3) for u gives (correct to O(µ2) terms)

u =
−Uη

h
− 1

2
µ2U

(
1

3
h2 − B2

)(
η

h

)
XX

. (5.5)

Substituting this expression for u in (5.4), the following equation is obtained correct
to O(µ2) terms determining η:

(1 − R)η − RU 2η

h2
+

εRU 2η2

2h2
+ µU 2 d

dX
H [η]

+ µ2U 2

(
εη +

R

3h

)
d2η

dX2
+

1

2
µ2εU 2

(
1 +

R

3h2

)(
dη

dX

)2

+
1

2
µ2εU 2

{
d

dX
H [η]

}2

+ µ2εU 2 d

dX
H

[
η

d

dX
H [η]

]
= 0. (5.6)

If in the relation (2.1) introduced to write the governing equations in dimensionless
form we replace U0 by c0 =

√
gh1(1 − R)/R, the velocity of a very long internal

wave, and α by h1, then (5.6) can be written as follows, where η and U represent
dimensionless quantities η∗/h1 and U ∗/c0, and where we set ρ = 1/R:

− η

U 2
+

1

2(1 − η)2
− 1

2
− µρH [ηX] = µ2F (η, ηX, ηXX), (5.7)
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where

F (η, ηX, ηXX) =
1

2

(
ρ +

1

3h2

)(
dη

dX

)2

+

(
ρη +

1

3h

)
d2η

dX2

+ ρ
d

dX
H

[
η

d

dX
H [η]

]
+

1

2
ρ

{
d

dX
H [η]

}2

. (5.8)

If O(µ2) terms are neglected, then (5.7) becomes

− η

U 2
+

1

2(1 − η)2
− 1

2
− µρH [ηX] = 0. (5.9)

Let for U = U (0) the solution of (5.9) for η be η(0)(X), i.e. η(0)(X) satisfies the equation,

− η(0)

U (0)2
+

1

2(1 − η(0))2
− 1

2
− µρH

[
η

(0)
X

]
= 0. (5.10)

Now let

η = η(0)(X) + µ2η(1)(X) (5.11)

be the solution of (5.7) with U = U (0), where η(0)(X) satisfies (5.10). Substituting for η

given by (5.11) in (5.7) with U = U (0) and then equating O(µ2) terms on both sides,
the following equation is obtained determining η(1)(X),[

− 1

U (0)2
+

1

(1 − η(0))3
− µρ∂XH

]
η(1) = F

(
η(0), η

(0)
X , η

(0)
XX

)
. (5.12)

Finally, if we normalize X by h1 instead of by L, according to (2.1), we have µ = 1
and consequently we find that

η = η(0)(X) + η(1)(X) (5.13)

is the solution of the following equation for U = U (0),

− η

U 2
+

1

2(1 − η)2
− 1

2
− ρH [ηX] = F (η, ηX, ηXX), (5.14)

where η(0)(X) satisfies the equation

− η

U 2
+

1

2(1 − η)2
− 1

2
− ρH [ηX] = 0 (5.15)

for U =U (0), and η(1)(X) is obtained from the equation[
− 1

U (0)2
+

1

(1 − η(0))3
− ρ∂XH

]
η(1) = F

(
η(0), η

(0)
X , η

(0)
XX

)
. (5.16)

Equation (5.15) is same as (13) of Choi & Camassa (1996b) and (4.46) of Choi &
Camassa (1999). Therefore, having obtained the solution of (5.15) for U =U (0) by
Newton’s method following Choi & Camassa (1996b) or Choi & Camassa (1999), we
can get η(1)(X) from (5.16). This gives solitary wave solutions (5.13) for long internal
waves in a two-fluid system for different wave speeds.

The method of Choi & Camassa (1996b) for solving their equation (13) is applied
here to recompute the solution η(0)(X) of (5.15) for two different values of U =1.20,
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Figure 3. Comparison of O(µ) wave profile and O(µ2) wave profile; ρ = 1/R = 1.05.
(a) U = 1.20, (b) U = 1.50. - - - - - - O(µ) wave profile; ——— O(µ2) wave profile.

1.50 and for ρ =1.05, 1.28 choosing

η(0)(X) = − α

1 +
9α2X2

16ρ

, U = 1 +
3

8
α, (5.17)

which is the solution of BO equation, as the initial guess. The numerical scheme is
given in detail in Choi & Camassa (1996b). Here we have followed the same scheme.
We take ρ =1.05, 1.28 and U = 1.20, 1.50. Substituting this solution η(0)(X) on the
right-hand side of (5.16) we solve this equation for η(1)(X) with the same kind of
discretization as for solving (5.15). The solitary wave profile η(X) = η(0)(X) + η(1)(X)
for two different values of U and two different values of ρ are shown in figure 3(a, b)
and figure 4(a, b) showing profiles correct to both O(µ) and O(µ2) terms.

Finally, we plot −η(0), the maximum depression of solitary wave profile against U ,
the solitary wave speed in figure 5.

In figure 3(a, b) and figure 4(a, b) solitary wave profiles are for fixed value of
velocity. We have also plotted solitary wave profiles obtained from (5.7) and (5.9)
for fixed value of amplitude. These are shown in figure 6(a, b). It is observed that
at O(µ2) order solitary wave crest becomes flattened and it is more clear for larger
amplitudes.
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(a) U = 1.20, (b) U = 1.50. - - - - - - O(µ) wave profile; ——— O(µ2) wave profile.

1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

U

−η(0)

ρ  = 1.05

Figure 5. Maximum depression −η(0) against velocity U ; ρ = 1/R = 1.05; - - - - - - for O(µ)
equation; ——— for O(µ2) equation.

To compare solitary wave profiles obtained numerically from O(µ2) evolution
equation (5.7) with the wave profiles obtained from full Euler equations algorithm
(shown in Grue et al. 1999) we have plotted figure 7(a, b) for ρ−1 = R =0.78 and
for two different values of wave amplitude am. In figure 7(a) Euler’s wave profile is
for the case when the depth ratio of the upper fluid layer to the lower fluid layer



Long internal waves 297

−50−40−30−20−10 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

X

−η(0) = 0.875

−50−40−30−20−10 0 10 20 30 40 50
0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

X

(a) −η(X)

(b) −η(X)

ρ  = 1.05

−η(0) = 1.884
ρ  = 1.05

Figure 6. Comparison of O(µ) wave profile and O(µ2) wave profile; ρ = 1.05; - - - - - -
O(µ) wave profile; ——— O(µ2) wave profile.

is 1:9 and in figure 7(b) the depth ratio is 1:24. Solitary wave profiles as obtained
from O(µ) evolution equation (5.9) are also plotted in figure 7(a, b). These figures
show that O(µ2) evolution equation (5.7) gives more appropriate results than O(µ)
evolution equation (5.9).

Figure 8 shows a comparison of solitary wave amplitude against velocity as
estimated from O(µ) evolution equation (5.9), O(µ2) evolution equation (5.7) and
also from Euler’s estimate by taking the depth ratio 1:99 (figure 10b of Camassa
et. al. 2006). It is found that as far as solitary wave amplitude is concerned, the
O(µ2) evolution equation (5.7) predicts almost accurately the solitary wave amplitude
provided that the lower fluid is deep enough and velocity is small enough.

6. A time-domain solution for weakly nonlinear case
As a simplest time-domain solution of (3.4) and (3.5) in the weakly nonlinear case

we consider the propagation of an approximate solitary wave following the numerical
method given by Nguyen & Dias (2008).

If in (2.1) we take U0 =
√

gh1(1 − R)/R instead of U0 =
√

gh1 then (3.4) and (3.5)
assume the following forms:(

1 − R

R

)
ηt = (hu)x − 1

2
µ2

{
h

(
h2

3
− B2

)
uxx

}
x

(6.1)
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Figure 7. Comparison of O(µ) wave profile and O(µ2) wave profile with Euler’s result;
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Figure 8. Velocity U versus amplitude η(0) of solitary wave profile; R = ρ−1 = 0.78; Euler
equations result (Camassa et al. 2006) for h1:h2 = 1:99 (dotted line); O(µ) wave profile (dashed
line); O(µ2) wave profile (solid line).
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and(
R

1 − R

)
ut = ηx − ε

(
R

1 − R

)2

uux +
µ

R
H [ηtt ] +

µ2ε

R
ηtηxt +

µ2ε

R
(ηηtt )x

+
1

2
µ2

(
R

1 − R

)
{(h2 − B2)uxt}x +

1

2
µ2ε

(
R

1 − R

)2

{(h2 − B2)uuxx}x

− 1

2
µ2ε

(
R

1 − R

)2

{h2u2
x}x +

µ2ε

R
H [{ηtH [ηt ]}x] +

µ2ε

R
H [{ηH [ηtt ]}x]

+
µ2ε

R
H [ηt ]{H [ηt ]}x. (6.2)

Equations (6.1) and (6.2) can be directly employed to find a time-domain solution.
Instead of doing so, here we derive a single time-evolution equation for one-way
propagation and then we apply the Runge–Kutta–Gill algorithm to perform time
stepping. This reduces computational time and effort considerably. For derivation of
single time-evolution equation we have followed the technique of Nguyen & Dias
(2008).

For travelling wave solution of (6.1) and (6.2) in the form η = η(x − Ut) and
u = u(x − Ut), where U is slightly greater than 1 for right travelling wave, we take
u = u(η) up to O(µ2) as follows:

u = −
(

1 − R

R

)
(η + M + µN + µ2S), (6.3)

where M,N, S are correct to O(ε2) satisfying Mt ≈ −Mx , Nt ≈ −Nx and St ≈ −Sx for
right travelling wave of sufficiently small amplitude. Expressions for M , N and S are
given in Appendix B.

For u given by (6.3), the time-evolution equation at O(µ) becomes

ηt +

{
η − 3

4
εη2 +

µ

2R
H [(1 − 3εη)ηx] − µ

2R
εηH [ηx]

}
x

= 0. (6.4)

For solitary wave solution of (6.4) propagating towards positive x direction with
velocity U , (6.4) gives

−Uη + η − 3

4
εη2 +

µ

2R
H [(1 − 3εη)ηx] − µ

2R
εηH [ηx] = 0. (6.5)

Equation (6.5) matches with (5.9) up to O(ε2) when the term 1/h2 of it expanded
binomially and U of (6.5) is replaced by ((3/2) − (1/2U 2)).

We now apply Newton’s method to (6.5) in order to find a solitary wave profile
satisfying (6.5) for U = 1.1. For this, we have chosen the initial profile to be

η(0) = η(x − Ut) = − α

1 +
9α2(x − Ut)2

16ρ

, α =
8

3

(
1√

3 − 2U
− 1

)
. (6.6)

While applying Newton’s method to (6.5), we have chosen the x interval as [−400,
1600] and partitioned it by the points xi = x0 + ie, i = (1)n, where x0 = −400, xn = +
1600 and e =0.5. Denoting η at xi by ηi we can write (6.5) in discretized form as
follows:

−Uηi + ηi − 3

4
η2

i +
1

2R
{H [(1 − 3η)ηx]}i − 1

2R
ηi{H [ηx]}i =0, i = 1(1)n. (6.7)
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Figure 9. Solitary wave propagating with velocity U =1.104; ρ = 1/R = 1.28.

The associated Jacobian matrix is given by [JAC ij ], where

JAC ij =

[
− U + 1 − 3

2
η − 1

2R
{H [ηx]}i

]
δij

+
1

2Rπe

{
ωj−1

j − i − .5
− ωj

j − i + .5

}
{(1 − 3ηj ) − ηi}, i, j = 1(1)n, (6.8)

where ωj = .5 for j = 1, n, otherwise ωj = 1. These are the quadrature weights when the
Hilbert transform term is replaced by a composite Trapezoidal rule. All other Hilbert
transform terms are evaluated using the property F (Hf )(ξ ) = −i sgn(ξ )F (f )(ξ ), where
F denotes the Fourier transform. For numerical computation of such terms, the fast
Fourier transform and its inverse transform are applied.

Finally, at order O(µ2), we get the following time-evolution equation:

ηt +

{
η − 3

4
εη2 +

µ

2R
H [(1 − 3εη)ηx] − µ

2R
εηH [ηx]

+ µ2S − µ2ε

(
1

3
− B2

2
− 1

2R2

)
ηηxx

}
x

= 0. (6.9)

Equation (6.9) is correct up to O(µ2, ε2). We then find approximate solitary wave
profile satisfying (6.9) by improving the wave profile obtained from (6.5). For this
we have followed the same procedure explained in § 5. In order to observe the time
evolution of this solitary wave just obtained we apply Runge–Kutta–Gill algorithm
to (6.9). While applying Runge–Kutta–Gill algorithm we have taken time step to be
δt = 0.01. We find that the wave retains its initial shape while moving along positive
x direction for a long time. The wave profiles at t = 0, 250 and 1200 are shown in
figure 9.

7. Conclusion
Choi & Camassa (1996b, 1999) have derived fully nonlinear O(µ) model equations

for internal waves in a two-fluid system with deep lower layer. In the present paper,
these equations have been extended to include O(µ2) terms and to include the effect
of propagation in two horizontal space dimensions. The model equations derived
consist of two coupled equations for two dependent variables, one of which is the
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elevation of the interface and the other is the horizontal velocity in the upper layer
at an arbitrary elevation, while in Choi & Camassa (1996b, 1999) this variable is the
depth averaged velocity. For unidirectional solitary wave propagation the two coupled
equations reduce to a single equation for the elevation of the interface. It is shown
that this single equation can be solved by the same numerical method adopted by
Choi & Camassa (1996b, 1999). For two values of density ratios and for two different
wave speeds the solitary wave profiles have been obtained numerically. Figures have
been plotted showing amplitude against velocity for two different density ratios. It
is found that the amplitude increases with velocity. It is also observed that the peak
amplitude according to O(µ2) equation is lower than that from O(µ) equation. It
is found that solitary wave profiles obtained from O(µ2) evolution equation are in
better agreement with Euler’s computational profiles than those from O(µ) evolution
equation. The propagation of solitary wave is also studied numerically.

For application in real oceans, the assumption of constant density layers cannot
be very accurate and it is necessary to consider more realistic density profiles.
By approximating a realistic density profile by a number of layers of different
constant buoyancy frequency, the Helmholtz equation can easily be solved in each
layer although two neighbouring layers are coupled nonlinearity through boundary
conditions at the interfaces. Using such type of density profile, Grue et al. (2000)
and Fructus & Grue (2004), respectively, for two and three layer systems computed
numerically the fully nonlinear solution of Euler equations. Vornovich (2003), on
the other hand, used a long wave asymptotic approach similar to Choi & Camassa
(1999) and obtained a strongly nonlinear model for a two-layer system with constant
buoyancy frequency in each layer and a possible jump in density at the layer interface.
Goullet & Choi (2008) have further considered the more restricted case with a
continuous density distribution at the interface. We are presently investigating higher-
order model equations in this context for the case of finite water depth. Results will
be described in a subsequent paper.

This collaborative work started while one of the authors (K. P. Das) was a visitor
at the Center for Applied Coastal Research, University of Delaware. This author is
grateful for the hospitality during that period. This work was partially supported by
the College of Engineering, University of Delaware.

Appendix A. Derivation of linear dispersion relation
If we assume η = η0e

i(k.r−ωt), where η0 is a constant, then the second term of (4.7)

= − 1

2π
µω2e−iωtη0∇2

∫ ∫ ∞

−∞

1

|ξ |e
ik.(r+ξ ) dξ, r − r ′ = ξ,

= µω2kη.

Therefore, if the space–time dependence of η and Pa is of the form ei(k.r−ωt), then we
get the following two algebraic equations from (4.5) and (4.7)

iωη +

{
1 +

1

2
µ2

(
1

3
− B2

)
k2

}
Pa = 0,

{k2(1 − R) − µω2k}η − iωR

{
1 +

1

2
µ2(1 − B2)k

2

}
Pa = 0.

The condition for the existence of nontrivial solution of these two equations for η

and Pa produces the linear dispersion given by (4.8).
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Appendix B. Derivation of M, N and S appearing in (6.3)
At O(µ0), (6.1) and (6.2) reduce to the following equations:(

1 − R

R

)
ηt = (hu)x, (B 1)

(
R

1 − R

)
ut = ηx − ε

(
R

1 − R

)2

uux. (B 2)

To find single time-evolution equation for sufficiently small-amplitude waves we take
(following Nguyen & Dias 2008)

u = −
(

1 − R

R

)
(η + εM), (B 3)

where M is small compared to η and u and satisfy Mt ≈ −Mx for right travelling
waves. Either of the two equations (B 1) and (B 2) produce the same evolution equation

ηt +

{
η − 3

4
εη2

}
x

= 0, (B 4)

if M = εη2/4. At O(µ), we take

u = −
(

1 − R

R

)
(η + εM + µN), (B 5)

where N is correct to O(ε2) and Nt ≈ −Nx . Equations (6.1) and (6.2) produce the
same evolution equation (6.5) if N has the following form:

N =
1

2R
H [(1 − 3εη)ηx]. (B 6)

While finding N we have calculated ηtt using (B4) as follows:

ηtt = −
{

η − 3

4
εη2

}
tx

= (1 − 3εη)ηxx − 3εη2
x. (B 7)

Extending the analysis up to O(µ2) in a similar way, we get

S =

(
1

3
− B2

2
− 1

2R2

)
ηxx − ε

4
(1 − B2)ηηx +

ε

4

(
1

R
− 5

6
− B2

2
+

15

2R2

)
η2

x

+
ε

2

(
1

R
− 11

2
− B2

4
+

15

4R2

)
ηηxx +

ε

2

(
1

R
− 1

R2

)
H [ηxH [ηx]]

+
ε

2

(
1

R
− 7

4R2

)
H [ηH [ηxx]] +

ε

4

(
1

R
− 1

4R2

)
{H [ηx]}2. (B 8)

While calculating S we have calculated ηt and ηtt from (6.5).
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